Category Archives: VMware

VMC Tanzu Header

VMware Cloud on AWS Deep Dive – Activating, Deploying and Using the managed Tanzu Kubernetes Grid Service

In this blog post I’m going to deep dive into the end-to-end activation, deployment, and consuming of the managed Tanzu Services (Tanzu Kubernetes Grid Service > TKGS) within a VMware Cloud on AWS SDDC. I’ll deploy a Tanzu Cluster inside a vSphere Namespace, and then deploy my trusty Pac-Man application and make it Publicly Accessible.

Previously to this capability, you would need to deploy Tanzu Kubernetes Grid to VMC, which was fully supported, as a Management Cluster and then additional Tanzu Clusters for your workloads. (See Terminology explanations here). This was a fully support option, however it did not provide you all the integrated features you could have by using the TKGS as part of your On-Premises vSphere environment.

What is Tanzu Services on VMC?

Tanzu Kubernetes Grid Service is a managed service built into the VMware Cloud on AWS vSphere environment.

This feature brings the availability of the integrated Tanzu Kubernetes Grid Service inside of vSphere itself, by coupling the platform together, you can easily deploy new Tanzu clusters, use the administration and authentication of vCenter, as well as provide governance and policies from vCenter as well.

Note: VMware Cloud on AWS does not enable activation of Tanzu Kubernetes Grid by default. Contact your account team for more information. 

Note2: In VMware Cloud on AWS, the Tanzu workload control plane can be activated only through the VMC Console.
But wait, couldn’t I already install a Tanzu Kubernetes Grid Cluster onto VMC anyway?

Tanzu Kubernetes Grid is a multi-cloud solution that deploys and manages Kubernetes clusters on your selected cloud provider. Previously to the vSphere integrated Tanzu offering for VMC that we are discussing today, you would deploy the general TKG option to your SDDC vCenter.

What differences should I know about this Tanzu Services offering in VMC versus the other Tanzu Kubernetes offering?
  • When Activated, Tanzu Kubernetes Grid for VMware Cloud on AWS is pre-provisioned with a VMC-specific content library that you cannot modify.
  • Tanzu Kubernetes Grid for VMware Cloud on AWS does not support vSphere Pods.
  • Creation of Tanzu Supervisor Namespace templates is not supported by VMware Cloud on AWS.
  • vSphere namespaces for Kubernetes releases are configured automatically during Tanzu Kubernetes Grid activation.
Activating Tanzu Kubernetes Grid Service in a VMC SDDC
Reminder: Tanzu Services Activation capabilities are not activated by default. Contact your account team for more information.

Within your VMC Console, you can either go via the Launchpad method or via the SDDC inventory item. I’ll cover both:

  • Click on Launchpad
  • Open the Kubernetes Tab
  • Click Learn More

VMC - Launchpad - Kubernetes

  • Select the Journey Tab
  • Under Stage 2 – Activate > Click Get Started

VMC - Launchpad - Kubernetes - Journey - Get started

Alternatively, from the SDDC object in the Inventory view

  • Click Actions
  • Click “Activate Tanzu Kubernetes Grid”

VMC - Inventory - SDDC - Activate Tanzu Kubernetes Grid

You will now be shown a status dialog, as VMC checks to ensure that Tanzu Kubernetes Grid Service can be activated in your cluster.

This will check you have the correct configurations and compute resources available.

VMC - Inventory - SDDC - Activate Tanzu Kubernetes Grid - Checking cluster resources

If the check is successful, you will now be presented the configuration wizard. Essentially, all you must provide is your configuration for four networks. Continue reading VMware Cloud on AWS Deep Dive – Activating, Deploying and Using the managed Tanzu Kubernetes Grid Service

Tanzu Blog Logo Header

Tanzu Service Mesh – Monitor Service Level Objectives and Configure Service Autoscaling

Continuing from the First Look blog post, where we created a distributed application between different public cloud Kubernetes deployments and connected them via Tanzu Service Mesh. We will move onto some of the more advanced capabilities of Tanzu Service Mesh.

In this blog post, we’ll look at how we can setup monitoring of our application components and performance against a Service Level Objective, and then how Tanzu Mission Control and action against violations of the SLO using auto-scaling capabilities.

What is a Service Level Objective and how do we monitor our app?

Service level objectives (SLO/s) provide a structured way to describe, measure, and monitor the performance, quality, and reliability of micro-service apps.

A SLO is used to describe the high-level objective for acceptable operation and health of one or more services over a length of time (for example, a week or a month).

  • For example, Service X should be healthy 99.1% of the time.

In the provided example, Service X can be “unhealthy” 1% of the time, which is considered an “Error Budget”. This allows for downtime for errors that are acceptable (keeping an app up 100% of the time is hard and expensive to achieve), or for the likes of planned routine maintenance.

The key is the specification of which metrics or characteristics, and associated thresholds are used to define the health of the micro-service/application.

  • For example:
    • Error rate is less than 2%
    • CPU Average is Less than 80%

This specification makes up the Service Level Indicator (SLI/s), of which one or multiple can be used to define an overall SLO.

Tanzu Service Mesh SLOs options

Before we configure, let’s quickly discuss what is available to be configured.

Tanzu Service Mesh (TSM) offers two SLO configurations:

  • Monitored SLOs
    • These provide alerting/indicators on performance of your services and if they meet your target SLO conditions based on the configured SLIs for each specified service.
    • This kind of SLO can be configured for Services that are part of a Global Namespace (GNS-scoped SLOs) or services that are part of a direct cluster (org-scoped SLOs).
  • Actionable SLOs
    • These extend the capabilities of Monitored SLOs by providing capabilities such as auto-scaling for services based on the SLIs.
    • This kind of SLO can only be configured for services inside a Global Namespace (GNS-scoped SLO).
    • Each actionable SLO can have only have one service, and a service can only have one actionable SLO.

The official documentation also takes you through some use-cases for SLOs. Alternatively, you can continue to follow this blog post for an example.

Quick overview of the demo environment
  • Tanzu Service Mesh (of course)
    • Global Namespace configured for default namespace in clusters with domain “app.sample.com”
  • Three Kubernetes Clusters with a scaled-out application deployed
    • AWS EKS Cluster
      • Running web front end (shopping) and cart instances
    • Azure AKS Cluster
      • Running Catalog Service that holds all the images for the Web front end
    • GCP GKE
      • Running full copy of the application

In this environment, I’m going to configure a SLO which is focused on the Front-End Service – Shopping, and will scale up the number of pods when the SLIs are breached.

Configure a SLO Policy and Autoscaler
  • Under the Policies header, expand
  • Select “SLOs”
  • Select either New Policy options

Continue reading Tanzu Service Mesh – Monitor Service Level Objectives and Configure Service Autoscaling

Red Hat OpenShift + VMware Header

OpenShift 4.10 on VMware – Introducing the out-of-the-box vSphere CSI Driver installation

OpenShift Container Platform defaults to using an in-tree (non-CSI) plug-in to provision vSphere storage.

What’s New?

In OpenShift 4.9, the out-of-the-box installation of the vSphere CSI driver was tech preview. This has now moved to GA!

This means during an Installer-Provisioned-Installation cluster bring up, the vSphere CSI driver will be enabled.

This is part of the future “journey” of OpenShift to CSI drivers. As you may be aware, the original storage implementations “in-tree” drivers will be removed from future versions of Kubernetes, making way for the CSI Drivers, a better storage integration implementation.

OpenShift Storage - Journey to CSI

Therefore, the Red Hat team have been working with the upstream native vSphere CSI Driver, which is open-source and VMware Storage team, to integrating into the OpenShift installation.

The aim here is two-fold, take further advantage of the VMware platform, and to enable CSI Migration. So that is easier for customers to migrate their existing persistent data from in-tree provisioned storage constructs to CSI provisioned constructs.

How do I enable this?

Continue reading OpenShift 4.10 on VMware – Introducing the out-of-the-box vSphere CSI Driver installation

vRealize Operations Management Pack Builder Header

vRealize Operations Management Pack Builder – Building your first management pack

What is the Management Pack Builder?

Well, it’s exactly as the name suggests, a tool for building your own vRealize Operations Management Pack, to bring data into vROPs whereby there is no existing Management Pack today.

How do I get access to it?

You can sign up for the BETA here. Currently VMware is taking feedback from customers to help shape the future of this product.

You can find documentation and videos on the product on this page.

Note: VMware does not commit to delivering features discussed in this program in any generally available product.
Installing the Appliance
I’m not going to go into detail here, it’s a simple appliance that you deploy as an OVA file and provide the networking configuration as either DHCP or Static IP.
Setup the Management Pack Builder

Log into the appliance using “admin/admin” and you will be prompted to change your password.

You will need to licence the product (using the beta key).

  • Click the little person icon in the top right
  • Select “Licence”
  • Apply the licence

Next, we need to create a connection to our vRealize Operations environment. While this step is not necessary at all to get started. If you want to create relationships for data objects with existing vROPs objects, you need to configure this connection.

  • Select the “vRealize Operations Connections Tab”
  • Click “Add vRealize Operations Connection” button
  • Input your details
    • Click Test
    • Click Save

vRealize Operations Management Pack Builder - vRealize Operations Connector

Creating your first management pack

Continue reading vRealize Operations Management Pack Builder – Building your first management pack

Tanzu Observability Header

Tanzu Observability – First look at monitoring OpenShift & VMware Cloud on AWS

Recently, I was involved in some work to assist the VMware Tanzu Observability team to assist them in updating their deliverables for OpenShift. Now it’s generally available, I found some time to test it out in my lab.

For this blog post, I am going to pull in metrics from my VMware Cloud on AWS environment and the Red Hat OpenShift Cluster which is deployed upon it.

What is Tanzu Observability?

We should probably start with what is Observability, I could re-create the wheel, but instead VMware has you covered with this helpful page.

Below is the shortened table comparison.

Monitoring vs. Observability

As a developer you want to focus on developing the application, but you also do need to understand the rest of the stack to a point. In the middle, you have a Site Reliability Engineer (SRE), who covers the platform itself, and availability to ensure the app runs as best it can. And finally, we have the platform owner, where the applications and other services are located.

Somewhere in the middle, when it comes to tooling, you need to cover an example of the areas listed below:

  • Application Observability & Root Cause Analysis
    • App-aware Troubleshooting & Root Cause Analysis
  • Distributed Tracing
  • CI/CD Monitoring
  • Analytics with Query Language and high reliability, granularity, cardinality, and retention
  • Full-Stack Apps & Infra Telemetry as a Service
  • Infra Monitoring
    • Performance Optimization
    • Capacity and Cost Optimization
    • Configuration and Compliance

So now you are thinking, OK, but VMware has vRealize Operations that gives me a lot of data, so why is there a new product for this?

vRealize Operations and Tanzu Observability come together – delivering full stack monitoring and observability from both the infra-up and app-down perspective, equipping both teams in the org to meet common goals.

Monitoring & Observability

It is about the right tool for the right team and bringing together harmony between them. Which is why at VMware, the focus has been on covering the needs of team across the two products.

vRealize Operations is going to give you SLA metrics for your infrastructure and even application awareness. However Tanzu Observability brings more application focused features to allow you as a business, report on Application Experience of your end users/customers, at an SLA/SLO/KPI approach with extensibility to provide an Experience Level Agreement (XLA) type capability.

VMware Tanzu Observability by Wavefront delivers enterprise-grade observability and analytics at scale. Monitor everything from full-stack applications to cloud infrastructures with metrics, traces, event logs, and analytics.

High level features include:

To follow this blog, you can also easily get yourself access to Tanzu Observability.

Configuring data ingestion into Tanzu Observability using the native integrations

Configuring the OpenShift (Kubernetes) Integration using Helm

First, we need to create an API Key that we can use to connect our locally deployed wavefront services to the SaaS service to send data. Continue reading Tanzu Observability – First look at monitoring OpenShift & VMware Cloud on AWS