Category Archives: VMware

Tanzu Blog Logo Header

Tanzu Kubernetes Grid – Manual Certificate Renewal

The Issue
Note: VMware has released a full in-depth KB Article that I'd advise you review along with this blog post. If you have any queries or concerns with the processes detailed, always open a support ticket!
- How to rotate certificates in a Tanzu Kubernetes Grid cluster (86251)

One day my Kubernetes cluster just stopped responding. I could no longer connect to the Kubernetes API.

I rebooted all the nodes (as it was a demo environment) to no luck, and still nothing. So I had to go off digging.

The Cause

I SSH’d into one of my control-plane nodes, and started to tail the kubelet logs. Continue reading Tanzu Kubernetes Grid – Manual Certificate Renewal

vRealize Automation Header

vRealize Automation – Property groups deep dive

I had the pleasure of working with a customer who wanted to use property groups within vRealize Automation, to provide various configuration data to drive their deployments. They asked some queries about how to use property groups that went beyond the documentation, so I thought it would also make a good blog post.

What are property groups?

Property groups were introduced in vRealize Automation 7.x and sorely missed when the 8.x version was shipped. They were reintroduced in vRA 8.3.

When you several properties that always appear together in your Cloud Templates, you can create a property group to store them together.

This allows you to re-use the same properties over and again across Cloud Templates from a central construct, rather than replicate the same information directly into each cloud template.

The benefit of doing this, is that if you update any information, it is pushed to all linked cloud templates. Potentially this could be a disadvantage as well, so once you use these in production, be mindful of any updates to in-use groups.

There are two types of property groups. When creating a property group, you select the type. You do not have the ability to change or convert the type once the group has been created.

  • Inputs

    Input property groups gather and apply a consistent set of properties at user request time. Input property groups can include entries for the user to add or select, or they might include read-only values that are needed by the design.

    Properties for the user to edit or select can be readable or encrypted. Read-only properties appear on the request form but can’t be edited. If you want read-only values to remain totally hidden, use a constant property group instead.

  • Constants

    Constant property groups silently apply known properties. In effect, constant property groups are invisible metadata. They provide values to your Cloud Assembly designs in a way that prevents a requesting user from reading those values or even knowing that they’re present. Examples might include license keys or domain account credentials.

Getting Started with a Input Property Group

Ultimately the Input Property Group works the exact same way as Inputs you specify on the cloud template directly. The group option simply provides a way to centralise these inputs for use between cloud templates.

Create an Input Property Group
  • Click on Design Tab
  • Click Property Groups from the left-hand navigation pane
  • Select New Property Group

vRA - Cloud Assembly - Design - Property Groups - New Property Group Continue reading vRealize Automation – Property groups deep dive

VMC Tanzu Header

VMware Cloud on AWS Deep Dive – Activating, Deploying and Using the managed Tanzu Kubernetes Grid Service

In this blog post I’m going to deep dive into the end-to-end activation, deployment, and consuming of the managed Tanzu Services (Tanzu Kubernetes Grid Service > TKGS) within a VMware Cloud on AWS SDDC. I’ll deploy a Tanzu Cluster inside a vSphere Namespace, and then deploy my trusty Pac-Man application and make it Publicly Accessible.

Previously to this capability, you would need to deploy Tanzu Kubernetes Grid to VMC, which was fully supported, as a Management Cluster and then additional Tanzu Clusters for your workloads. (See Terminology explanations here). This was a fully support option, however it did not provide you all the integrated features you could have by using the TKGS as part of your On-Premises vSphere environment.

What is Tanzu Services on VMC?

Tanzu Kubernetes Grid Service is a managed service built into the VMware Cloud on AWS vSphere environment.

This feature brings the availability of the integrated Tanzu Kubernetes Grid Service inside of vSphere itself, by coupling the platform together, you can easily deploy new Tanzu clusters, use the administration and authentication of vCenter, as well as provide governance and policies from vCenter as well.

Note: VMware Cloud on AWS does not enable activation of Tanzu Kubernetes Grid by default. Contact your account team for more information. 

Note2: In VMware Cloud on AWS, the Tanzu workload control plane can be activated only through the VMC Console.
But wait, couldn’t I already install a Tanzu Kubernetes Grid Cluster onto VMC anyway?

Tanzu Kubernetes Grid is a multi-cloud solution that deploys and manages Kubernetes clusters on your selected cloud provider. Previously to the vSphere integrated Tanzu offering for VMC that we are discussing today, you would deploy the general TKG option to your SDDC vCenter.

What differences should I know about this Tanzu Services offering in VMC versus the other Tanzu Kubernetes offering?
  • When Activated, Tanzu Kubernetes Grid for VMware Cloud on AWS is pre-provisioned with a VMC-specific content library that you cannot modify.
  • Tanzu Kubernetes Grid for VMware Cloud on AWS does not support vSphere Pods.
  • Creation of Tanzu Supervisor Namespace templates is not supported by VMware Cloud on AWS.
  • vSphere namespaces for Kubernetes releases are configured automatically during Tanzu Kubernetes Grid activation.
Activating Tanzu Kubernetes Grid Service in a VMC SDDC
Reminder: Tanzu Services Activation capabilities are not activated by default. Contact your account team for more information.

Within your VMC Console, you can either go via the Launchpad method or via the SDDC inventory item. I’ll cover both:

  • Click on Launchpad
  • Open the Kubernetes Tab
  • Click Learn More

VMC - Launchpad - Kubernetes

  • Select the Journey Tab
  • Under Stage 2 – Activate > Click Get Started

VMC - Launchpad - Kubernetes - Journey - Get started

Alternatively, from the SDDC object in the Inventory view

  • Click Actions
  • Click “Activate Tanzu Kubernetes Grid”

VMC - Inventory - SDDC - Activate Tanzu Kubernetes Grid

You will now be shown a status dialog, as VMC checks to ensure that Tanzu Kubernetes Grid Service can be activated in your cluster.

This will check you have the correct configurations and compute resources available.

VMC - Inventory - SDDC - Activate Tanzu Kubernetes Grid - Checking cluster resources

If the check is successful, you will now be presented the configuration wizard. Essentially, all you must provide is your configuration for four networks. Continue reading VMware Cloud on AWS Deep Dive – Activating, Deploying and Using the managed Tanzu Kubernetes Grid Service

Tanzu Blog Logo Header

Tanzu Service Mesh – Monitor Service Level Objectives and Configure Service Autoscaling

Continuing from the First Look blog post, where we created a distributed application between different public cloud Kubernetes deployments and connected them via Tanzu Service Mesh. We will move onto some of the more advanced capabilities of Tanzu Service Mesh.

In this blog post, we’ll look at how we can setup monitoring of our application components and performance against a Service Level Objective, and then how Tanzu Mission Control and action against violations of the SLO using auto-scaling capabilities.

What is a Service Level Objective and how do we monitor our app?

Service level objectives (SLO/s) provide a structured way to describe, measure, and monitor the performance, quality, and reliability of micro-service apps.

A SLO is used to describe the high-level objective for acceptable operation and health of one or more services over a length of time (for example, a week or a month).

  • For example, Service X should be healthy 99.1% of the time.

In the provided example, Service X can be “unhealthy” 1% of the time, which is considered an “Error Budget”. This allows for downtime for errors that are acceptable (keeping an app up 100% of the time is hard and expensive to achieve), or for the likes of planned routine maintenance.

The key is the specification of which metrics or characteristics, and associated thresholds are used to define the health of the micro-service/application.

  • For example:
    • Error rate is less than 2%
    • CPU Average is Less than 80%

This specification makes up the Service Level Indicator (SLI/s), of which one or multiple can be used to define an overall SLO.

Tanzu Service Mesh SLOs options

Before we configure, let’s quickly discuss what is available to be configured.

Tanzu Service Mesh (TSM) offers two SLO configurations:

  • Monitored SLOs
    • These provide alerting/indicators on performance of your services and if they meet your target SLO conditions based on the configured SLIs for each specified service.
    • This kind of SLO can be configured for Services that are part of a Global Namespace (GNS-scoped SLOs) or services that are part of a direct cluster (org-scoped SLOs).
  • Actionable SLOs
    • These extend the capabilities of Monitored SLOs by providing capabilities such as auto-scaling for services based on the SLIs.
    • This kind of SLO can only be configured for services inside a Global Namespace (GNS-scoped SLO).
    • Each actionable SLO can have only have one service, and a service can only have one actionable SLO.

The official documentation also takes you through some use-cases for SLOs. Alternatively, you can continue to follow this blog post for an example.

Quick overview of the demo environment
  • Tanzu Service Mesh (of course)
    • Global Namespace configured for default namespace in clusters with domain “app.sample.com”
  • Three Kubernetes Clusters with a scaled-out application deployed
    • AWS EKS Cluster
      • Running web front end (shopping) and cart instances
    • Azure AKS Cluster
      • Running Catalog Service that holds all the images for the Web front end
    • GCP GKE
      • Running full copy of the application

In this environment, I’m going to configure a SLO which is focused on the Front-End Service – Shopping, and will scale up the number of pods when the SLIs are breached.

Configure a SLO Policy and Autoscaler
  • Under the Policies header, expand
  • Select “SLOs”
  • Select either New Policy options

Continue reading Tanzu Service Mesh – Monitor Service Level Objectives and Configure Service Autoscaling

Red Hat OpenShift + VMware Header

OpenShift 4.10 on VMware – Introducing the out-of-the-box vSphere CSI Driver installation

OpenShift Container Platform defaults to using an in-tree (non-CSI) plug-in to provision vSphere storage.

What’s New?

In OpenShift 4.9, the out-of-the-box installation of the vSphere CSI driver was tech preview. This has now moved to GA!

This means during an Installer-Provisioned-Installation cluster bring up, the vSphere CSI driver will be enabled.

This is part of the future “journey” of OpenShift to CSI drivers. As you may be aware, the original storage implementations “in-tree” drivers will be removed from future versions of Kubernetes, making way for the CSI Drivers, a better storage integration implementation.

OpenShift Storage - Journey to CSI

Therefore, the Red Hat team have been working with the upstream native vSphere CSI Driver, which is open-source and VMware Storage team, to integrating into the OpenShift installation.

The aim here is two-fold, take further advantage of the VMware platform, and to enable CSI Migration. So that is easier for customers to migrate their existing persistent data from in-tree provisioned storage constructs to CSI provisioned constructs.

How do I enable this?

Continue reading OpenShift 4.10 on VMware – Introducing the out-of-the-box vSphere CSI Driver installation